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Reinforcement Learning: Introduction

In reinforcement learning, the objective is to learn a policy π which is a
mapping from states s ∈ S to actions a ∈ A. With each state-action pair, we
associate a cost c(s, a) : S ×A → R. The objective in reinforcement learning
is to learn a policy π which minimizes the average cost an agent will incur
over an episode.

argmin
π

T∑
t=0

[c(st , at)] (1)
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What To Learn?

Reinforcement learning, and broadly machine learning, addresses the problem
of learning from data. Generally, we decompose this problem of learning from
data into two distinct phases:

• What to learn? Generally, human expert designs a cost function which
informs the agent what task to perform and what kind of behaviour is
desirable and should be learned.

• Learning From Data Given some cost function, an optimization scheme
is generally developed which uses data and the specified cost function to
actually learn a policy to do the specified task,
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Is it always possible to specify a cost
function?

What is the cost function for driving a car?

What is the cost function for playing tennis?

What is the cost function for cooking?

7 / 25



Is it always possible to specify a cost
function?

What is the cost function for driving a car?

What is the cost function for playing tennis?

What is the cost function for cooking?

7 / 25



Is it possible then to learn without
specification of a cost function?
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Inverse Reinforcement Learning (IRL)

Imitation Learning In imitation learning, the goal is to learn to imitate
expert’s policy given only finite only demonstrations performed by expert.
Demonstrations are basically samples from experts policy and will be denoted
as τ ∼ πE .

Apprenticeship Learning In apprenticeship learning, the goal is to recover a
reward function from the samples of rollouts by expert and then use this
reward function to learn a policy which performs at least as well as the expert.
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Problem Is Ill Posed

If we follow the principle of maximizing the log likelihood of the expert
demonstrations, we arrive at an objective function of the following form

argmax
c

(
argmin

π
Eπ[c(s, a)]

)
− EπE [c(s, a)] (2)

However, this objective function does not has a unique critical point.

Regularizer
We can use prior knowledge to inform a choice of regularizer which takes
away at least some of the ambiguity present in the objective function above.

argmax
c

−ψ(c) +

(
argmin

π
Eπ[c(s, a)]

)
− EπE [c(s, a)] (3)
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Maximum Entropy Inverse Reinforcement Learning

However, despite a regularizer, we can not eliminate the full ambiguity. 1

resolved this issue by prposing to keep the ambiguity in full by learning a cost
function such that the stochastic policy learned by such a cost function has
the maximum entropy.

argmax
c

−ψ(c) +

(
argmin

π
−H(π) + Eπ[c(s, a)]

)
− EπE [c(s, a)] (4)

1B. D. Ziebart et al. “Maximum entropy inverse reinforcement learning.”. In: AAAI. vol. 8. Chicago, IL, USA. 2008,
pp. 1433–1438
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Issues With This Approach

• This requires solving a forward RL problem inside the inner loop.

argmax
c

−ψ(c) +

(
argmin

π
−H(π) + Eπ[c(s, a)]

)
− EπE [c(s, a)] (5)

I This is REALLY expensive, which makes this approach hard to scale.

• Regularization is performed by pre-defining a set of functions C to which
c must belong. A popular approach has been to assume c to lie in span
of some pre-defined basis functions. Unfortunately, if c does not lie in
this class, it can not be found by solving the above problem.
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GAIL 2

Occupancy Measure Of A Policy

For a given policy π, we can define its occupancy measure ρπ : S ×A → R
as ρπ(s, a) = π(a|s)

∑T
t=0 (P(st = s|π).

Intuitively, occupancy measure of a state-action pair is the unnormalized
probability of a policy landing in that state s and then taking action a from
that state.

2J. Ho and S. Ermon. “Generative adversarial imitation learning”. In: Advances in neural information processing systems. 2016,
pp. 4565–4573

14 / 25



GAIL

Instead of viewing the problem as finding a cost function which induces a
policy with expected cost equal to expert policy, they view the problem as
finding a cost function which induces a policy which has the same occupancy
measure as the expert’s policy. This has two benefits:

• Mapping from policy to occupancy measure is a bijection. So, there is a
unqieu solution that could be found.

• This turns the problem of finding a policy into a probabiliy distribution
estimation problem.

• This allows us to reduce the cost of expensive inner loop.
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GAIL

Theorem
The optimal policy learnt under the cost function learnt by solving the
optimization program

argmax
c

−ψ(c) +

(
argmin

π
−H(π) + Eπ[c(s, a)]

)
− EπE [c(s, a)] (6)

is same as the solution to the following optimization problem where ψ∗ is the
frenchel conjugate of the regualarizer ψ.

argmin
π
−H(π) + ψ∗(ρπ − ρπE ) (7)

16 / 25



GAIL

Finding ψ
argmin

π
−H(π) + ψ∗(ρπ − ρπE ) (8)

We note that ρπ and ρπE are measures (probability distributions). So, one
good choice for ψ∗ will be a function which minimizes Jensen Shannon
Divergence between them.

Following choice of ∗ does that

ψ∗(ρπ − ρπE ) = sup
D∈(0,1)S×A

Eπ [log(D(s, a)] + EπE [log(1− D(s, a))] (9)

The following choice of ψ has the frenchel conjugate of the above form.

ψ(c)
.

=

{
EπE [−c(s, a)− log(1− ec(s,a))], if c(s, a) < 0

+∞ otherwise.
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GAIL

Finding ψ

ψ(c)
.

=

{
EπE [−c(s, a)− log(1− ec(s,a))], if c(s, a) < 0

+∞ otherwise.

This regularizer has couple of nice properties:

• It admits all cost functions which are negative everywhere. This class is
sufficiently expressive for almost all cases.

• If the expert demonstrations are assigned high cost then this regularize
penalizes c heavily.

• This is average over expert demonstrations, so, it can automatically
adjust to new demonstrations and datasets and does not need to be
tuned for any problem.
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GAIL

Final Objective
GAIL attempts to find a saddle point (π,D) of the following expression.

Eπ[log(D(s, a))] + EπE [log(1− D(s, a))]− λH(π) (10)

where π and D are both represented as neural networks with weights θ and
w respectively. D is a discriminator network and λ is a hyperparameter which
can be used to control the role of entropy maximization.
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GAIL

Algorithm
for i = 1, 2, 3, ...:

1. Sample trajectories from current policy τi ∼ πθi .
2. Update discriminator parameters from wi to wi+1 with the gradient

Êτi [∇w log(D(s, a))] + ÊτE [∇w log(1− D(s, a))] (11)

3. Update policy network parameters from θi to θi+1 using Trust Region
Policy Update (TRPO) update rule with cost function log(Dwi+1(s, a))
and gradient

Êτi [∇θ log πθ(a|s) log(Dwi+1(s, a))]− λ∇θH(πθ) (12)
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GAIL

Comparison With GAN

The approach has quite a few parallels with Generative Adversarial Network
(GAN) 3. The key distinction, however, is that sampling process in GAN is
differentiable, which allows us to train GAN in an end to end fashion.

However, in GAIL, the sampling involves a non-differentiable
environment/simulator, so, we need to run a spearate policy search algorithm
(i.e. TRPO) to update parameters of policy network. This still amounts to
doing forward RL but key difference here, compared to other works, is that
forward RL loop need not be run till convergence.

3I. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing systems. 2014, pp. 2672–2680
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GAIL

Results

GAIL was tested on 9 physics based control tasks from OpenAI Gym
environment. These tasks incluced Humanoid (make a human like robot
walk), Ant (make a 3D four legged robot walk), Reacher (make a 2D arm
like robot reach a specific location), Hopper (make a 2D robot hop). On all
tasks, GAIL was able to match expert’s performance.
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GAIL

Discussion
• This is considered one of seminal works in IRL and has inspired a range

of derivative works.
I InfoGAIL - GAIL analogue of infoGAN.
I Multi Agent GAIL - GAIL for multi agent environments like playing a

cricket match
I Differentiable GAIL - Make sampling process differentiable using a model.

• Still the de-facto baseline against which works in IRL compare
themselves.
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GAIL On Atari

Challenges
There are two major challenges in this:

• Original GAIL was used on tasks with fully observable state. In Atari the
state space is partially observable which is a big challenge.

• The state space in Atari is very high dimensional (thousand of pixels)
and original GAIL was used on tasks with comparitively small
dimensions. For example, in humanoid full state dimension is only 47.
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Thank You.
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