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Abstract

Specification of a reward function which aligns with the
intentions of human users is a difficult task in reinforcement
learning. To circumvent this issue, various methods have
been proposed in the literature with the objective of implic-
itly inferring the reward function from the examples of ex-
pert behaviour. However, these methods often suffer from
drawbacks such as lack of robustness, difficulty in optimiza-
tion and high computational burden. Generative Adver-
sarial Imitation Learning (GAIL) subverts these issues by
posing the task of learning from demonstrations as an ad-
versarial game between a generator policy network (which
learns to imitate expert loss) and a discriminator network
(which learns to differentiate between the samples from ex-
pert policy and generator policy and hence implicitly cap-
ture the reward function of expert). We use GAIL to learn to
play two Atari games, Breakout and Pong. Our results are
competitive with the state of the art. Further, we use gradi-
ent based class activation mapping to interpret the actions
chosen by the policy network.

1. Introduction

Reinforcement learning (RL) is a framework for learning
policies for sequential decision making in complex, poten-
tially stochastic, environments. There are two chief meth-
ods to learn the policy for a given system, characterized as a
Markov Decision Process (MDP). In first method, which we
refer to as forward reinforcement learning, a reward func-
tion is formed and expected reward is maximized. In second
method, called imitation learning, while no reward function
is provided, samples are available from expert policy and
the objective then is to infer a policy which imitates expert
policy.

While forward reinforcement learning works well when
a reward function is easy to get by; in real life problems,
such as self driving cars and interactive robotics, engineer-

ing a reward function which accurately captures all the de-
sirable aspects of agent’s actions and is easy to optimize is
generally very hard. However, for such problems, collect-
ing demonstrations from an expert is often quite feasible
and can be done cheaply. This makes imitation learning an
attractive method for such problems.

Atari games are a challenging environment for testing fi-
delity of RL algorithms. In recent years, tremendous gains
have been made on this task, in particular by DeepMind, fi-
nally culminating in Agent57 [2] which achieved superhu-
man performance on all Atari games. Agent57 trains multi-
tude of policies on the spectrum hedged by fully exploitative
policy and fully exploratory policy and uses curiosity driven
exploration. However, sample efficiency remains a concern
as Agent57 needed as many as 90 Billion frames of Atari
games to achieve this result; a unrealistically large number
of samples.

Interpretability is currently an active research area and
has profound implications for real world deployment of re-
inforcement learning based applications. There are largely
two ways to make a data driven application interpretable.
First class of methods, for example, attention mechanisms,
bake the interpretability in the algorithm. Second class of
methods, such as sensitivity analysis, does not tinker the
learning algorithm but instead looks to explain the algo-
rithm directly at time of evaluation. While the native work
in interpretable reinforcement learning generally focuses on
the first class of methods, we note that in case of discrete
action space, as in Atari, policy network can be viewed as
a classification network selecting a particular action. We
leverage this view to apply the interpretability methods de-
veloped for classification purposes on our task.

2. Related Work

The most primitive form of imitation learning is be-
haviour cloning [8] in which problem is essentially treated
as a supervised task. Behaviour cloning has a fatal flaw
that it does not account for the fact that it is not individual



actions but the set of actions taken successively in demon-
strations which have high reward. Hence, policies learned
by behaviour cloning often do not generalize well and drift
error is quite prominent in such policies.

As an alternative, [|] propose learning a reward function
from the expert demonstrations first and then training a pol-
icy under the learned reward function. However, due to the
fact that the number of demonstrations is finite, there is in-
herent ambiguity in learning a reward function as a policy
may be optimal for many different reward functions. [15]
propose to eliminate this ambiguity by learning a reward
function such that the stochastic policy learned under that
reward function has maximum entropy. While the formula-
tion of [15] guarantees learning of maximum entropy policy
under linear reward function only, subsequent works have
shown that in practice explicitly maximizing the entropy of
policy via dual gradient descent also works well for exam-
ple [13] uses neural network as a function approximator and
observes better results than linear maximum entropy algo-
rithm due to the ability of neural network to express reward
function as complex non linear functions. In [5], neural net-
work is used to represent both the policy network and cost
function and near optimal trajectories can be recovered from
the expert’s samples.

However, despite the progress on low dimensional con-
tinuous tasks, imitation learning on Atari is still a far cry
from being characterized as a success. This is primarily due
to the fact that learning from raw pixels creates an addi-
tional layer of complexity. Further, state space of Atari is
quite large meaning that there is a high chance that an agent
will drift away from expert distribution. When this happens,
agent’s performance sharply deteriorates due to covariate
shift. To avoid this, it is essential to enable the agent to
be able to return back to states observed in demonstrations
if it drifts into states that are not seen in expert data. [3]
proposes to train an ensemble of imitation learning agents
by using a loss function which combines behaviour cloning
loss with an uncertainty loss which characterizes the vari-
ance within the ensemble. The intuition is that policies
within the ensemble will generally agree on states seen in
demonstration data (and hence incurring low cost) but will
vary greatly far away from expert distribution (and incurring
high cost). This encourages the agent to stay within expert
distribution and to quickly return to expert distribution if it
moves away from it. Soft Q Imitation Learning (SQIL)[9]
works on the similar principle where they design a sparse
reward function which gives agent a reward of +1 if it per-
forms the demonstrated action in given state and a reward
of 0 otherwise. They use Q-learning to learn a policy. De-
sign of experience replay is very critical in Q-learning [14].
SQIL keeps half the demonstrated experiences in the replay
buffer and half the experiences collected by the agent. As
the agent gets better with time, the collected experiences

begin to match closely with the demonstrated experiences.
This has the effect of decaying of effective reward to zero.

However, despite the empirical success, all the algo-
rithms mentioned here lack the theoretical guarantees of [0]
that in regime of infinite data, learned agent exactly matches
the occupancy measure of the expert. Further, all these al-
gorithms, including GAIL, lack robustness to distribution
shift. One interesting approach for tacking the behaviour
shift is [1 1] which proposes using expert data to recover
constraints which complement given nominal reward func-
tion.

There is also rich literature on learning from demonstra-
tions which are not optimal, however, we omit the literature
review of such works as they are beyond the scope of this
project.

3. Background

Reinforcement learning models the world as a Markov
Decision Process (MDP) in which agent has to take a series
of actions depending on the current state of the world such
that the minimum cost is incurred on average while agent
performs the given task.

Formally, a MDP is a tuple (S,.A, P,C, ) consisting of
a state space S, action space A, a dynamics model P which
is generally unknown, a cost function' and a discount factor
0<y< 1L

The objective is to minimize the cost function over all
possible trajectories.

min E,.[C(7)] (1)

For a particular policy 7, With each state, we can asso-
ciate a value function V™ (s) which is the expected value of
cost that will be incurred if from that state onward policy
7 ought to be followed. In similar fashion, we can define
a state-action value function Q™ (s, a) which measures the
expected cost to be incurred by taking actions a in state s
and following the policy 7 from thereon.

A popular class of methods called value iteration, or pol-
icy iteration, are based on the idea that value function of a
state must be equal to the expected value of value function
of its neighbouring states. Value iteration based methods
have guaranteed convergence in tabular case (i.e. discrete
state space and discrete action space with known dynamics)
but in continuous case these guarantees are lost due to the
fact that we have to use function approximation to represent
these values. Hence, in continuous cases, or even high di-
mensional discrete space, a more attractive alternative is to
attempt to directly optimize the objective in 1. This is possi-
ble to do due to a result known as Policy Gradient Theorem.

ICost function and reward function are often used interchangeably in
reinforcement learning literature to refer to the same idea of a function
which outputs a scalar number showing whether action is good or bad.
Cost function is minimized while reward function is maximized.
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This gradient estimate has a huge amount of variance due
to it being a monte carlo estimate but is unbiased. One easy
way to reduce is to include value function V' (s) as a base-
line. The difference thus attained is called ‘advantage’ A;.
This has the effect of amplifying the gradients when agent’s
estimate of expected return mismatches the actual return re-
ceived from the environment.
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In our experiments in this project, we use an advanced
policy gradient method called Proximal Policy Optimiza-
tion (PPO). It is well known in the policy gradient litera-
ture that if the update step is small then policy continuously
improves. However, this results in a painfully slow conver-
gence. Hence, there is incentive for designing algorithms
which take the largest possible step without losing guaran-
tees on policy improvement. These methods often constrain
the KL divergence between the current policy and updated
policy. The most popular method in this class is called Trust
Region Policy Optimization (TRPO).

min ]Et |:7T9 (at |St) At:|
o ﬂ-eold(at‘st> ()

s.t.KL [mg,,,(-|5¢), mo(:]s¢)] < €

This objective is time consuming to optimize as it re-
quires computation of the inverse of Fisher Information Ma-
trix characterizing the KL divergence between old and new
policy. However, [10] notes that following empirically de-
signed objective does the job equally well and gives similar
or superior results to TRPO.

Lppo = E¢ [min(ry - Ay, clip(ry, 1 —€,1+€) - Ap)]
(6)
Imitation Learning: A central problem in reinforce-
ment learning is specification of a reward function. Because
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Figure 1. The network is optimized via a multi scale optimization
procedure in which first discriminator is updated and then using
that discriminator as a proxy to cost function, policy network is
optimized.

of the complex nature of interactions that occur between an
agent and an environment, it is easy to design a reward func-
tion with ‘holes’ or mis-specifications which may result in
optimal agent doing things such as compromising safety. To
avoid the problem of mis-specification of reward function,
a popular approach is to use expert demonstrations such as
from human or a first principle based controller to specify
optimal behaviour and directly learn to imitate the expert
policy. While there is inherent mathematical ambiguity in
imitation learning framework due to ill posed nature of the
problem; by and large, most approaches try to learn a pol-
icy which performs close to expert policy according to some
metric M.

min By, [M(7)] —

e

Ermy [M(7)] 0

The most primitive approach of imitation learning, called
behavioural cloning, treats it as a supervised learning prob-
lem and trains an agent to match the expert’s action in a
given state. However, expert demonstrations do not cover
the entire state space. This results in areas which are ‘blind
spot’ for the agent. An easy fix for this approach is to
allow the agent to query human about the optimal action
in an arbitrary state; an approach called Data Aggregation
(DAGGER). However, humans often are not aware of opti-
mal action on per state basis rather act optimally over the
whole trajectory. Further, a common problem that is faced
by imitation learning is that expert demonstrations are often
only near optimal and not exactly optimal. This supervised
learning based approach is further limited by the fact that it
views a sequential decision making process as an instance
decision making process and loses to leverage any temporal
structure present in the demonstrations.
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Figure 2. Policy network for Pong consists of three layers of convolution filters. First layer contains 32 8 x 8 filters. Second layer consists
of 64 4 x 4 filters. Third layer also contains 64 filters but of dimensions 3 X 3. After the convolution layers, activations are flattened and
passed through a dense layer of 512 nodes. From here activations are fed separately to predict state value V' (s) and the action a.
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Figure 3. Discriminator has similar structure of convolution layers with half the number of filters in each corresponding layer. We concate-
nate action with the output from dense layer containing 512 nodes which is then passed through a series of dense layers to finally produce

a number in range [0, 1].

4. Data

Atari games consist of frames of dimensions 210 x 160 x
128 where 128 is the range of color palette. In order to min-
imize computation, we instead convert frames into RGB
format and then further use max pooling over channel di-
mension. Further, consecutive frames typically have a great
amount of redundancy, hence, we leverage this redundancy
and only sample every 4th frame. Frames are downsam-
pled to 84 x 84 to further minimize computation burden.
In games where multiple lives are available, we consider an
end of episode only when an agent has exhausted all of its
life. This ensures that all states remain reachable in princi-
ple. To ensure that markov assumption holds true, we con-
sider a state as a sequence of set number of observations.
In games, where start of game requires an action from the
player, we sample the initial state by initiating game by tak-
ing some random action.

In order to train an imitation learning algorithm, we re-
quire data from expert policy. This expert can either be a

human or some other algorithm driven code which achieves
a level of performance identical to or superior to an expert
human. For the experiments in this project, we use expert
trained via Proximal Policy Optimization algorithm avail-
able in open source RL Zoo github repository. We treat the
number of expert trajectories needed as a hyperparameter.

Further the data for training the policy network in GAIL
is acquired from Atari emulator and same preprocessing
step as mentioned in start of section are followed.

5. Methods

Formally, we consider a Markov Decision Process
(MDP) (S, A, P, c,v) where S is a set of states, A is set of
actions, P is a transition model mapping state action pairs to
next transitioned state and ¢ : S x A — R is a cost function
which returns a scalar corresponding to cost of a particular
action. Note that contemporary literature also refers to neg-
ative of cost function as a reward function and the two terms
are largely interchangeable.



We assume that there exists an expert with full knowl-
edge of the MDP, including the reward function, and has an
optimal policy mg from which samples can be drawn. We
further assume that expert can only be queried once and the
samples from expert policy, called demonstrations, are then
stored in the form of a dataset of demonstrations D. Given
the dataset D and the MDP minus the cost function, the ob-
jective is to recover a policy m which closely imitates the
policy 7g.

Algorithm 1 GAIL
Require: Expert trajectories 7z ~ 7g, initial policy net-
work parameters 6 and discriminator parameters wy.
fori=1,2,3,....do
Sample trajectories from the current policy network
T ~ Tg, .
Update the discriminator parameters from w; to w;4
with the gradient

E., [V log(Dy(s,a))] + Erpy [V log(l — Dy (s, a))

Update the parameters of policy network with proce-
dure PPO_Update () using 7; as trajectories, 6;_1 as
the old parameters & value network parameters and
log(D,,) as the cost function.

end for

Algorithm 2 PPO Update

Require: N trajectories 7 ~ my,_,,, old policy network pa-
rameters 0,4, Value Network V and discriminator pa-
rameters wy.

Set 0 = 0,4

for each trajectory do

T = LengthOfCurrentTrajectory

advantage =[]

ratio =[]

fort=T,...,1do
¢t = log(Dy, (s, at)) # cost
Ar=ct ‘é‘ ‘l/(ft) = V(st41)

o (a|st

ﬂeold(at\st)

advantage.append(A;)
ratios.append(r;)
end for
loss = min(ratios * advantage, clip(ratios, 1 — ¢, 1 + €) *
advantage)
gradients <— loss.backward()
0 = 0 + learning_rate*gradients
endfor

We propose to use Generative Adversarial Imitation

Learning (GAIL) [6] for this task. GAIL relies on the in-
sight that traditional imitation learning methods, such as ap-
prenticeship learning, learn a cost function ¢(s, a) and then
learn a policy 7 (-|s) which is used to evaluate this cost func-
tion. Based on this insight, they propose the following loss
function.

i E.[log(D(s,a)] — A
min | max [log(D(s,a)] — AH() )

+Eqx [log(1 — D(s, a))]

D is a discriminator which tries to distinguish between
state action pairs from the trajectories induced by policy
pig and w and H(w) = E,[log(w(:|s))] is the causal en-
tropy.

Intuitively, this loss function tries to match the distribu-
tion of state action visitation of expert policy mg and the
learned policy 7 under some metric function. If the metric
function is assumed to be the Jensen Shannon (JS) diver-
gence, then optimizing this loss function corresponds to the
minimization of JS divergence between the distribution of
state actions of g and .

Unlike the sampling process in traditional GAN, sam-
ples from the generator in equation 8 can not be backpro-
pogated through as the sampling process involves perform-
ing a roll-out through a non-differentiable simulator. Hence,
optimization of GAIL objective is done in two steps. In first
steps, objective in 8 is maximized with respect to discrim-
inator parameters. In second step, generator’s parameters
i.e. policy network is updated by using a policy gradient
method; for the puporses of our experiments, we used Prox-
imal Policy Optimization (PPO) [10].

PPO belongs to the class of trust region policy gradient
methods. Without providing the details, we note that PPO
suggests optimizing the following loss function.

Lppo = Ey[min(ry - Ay, clip(ry, 1 —€,1+¢€) - Ay)]
)

where

mo(at]se)

mod(at|st)’At =c +V(sip1) = Vi(se) (10

Ty =

In the above equations, g,,, is the policy under which
samples where collected (see figure 4). Intuitively, r; mea-
sure how much the current policy differs from the sampling
policy; if r; is small, then it means that we are in vicinity
of the sampling policy or in mathematical language inside a
trust region. If r; is large, we artificially clamp it to lie in-
side an e-cube centered on old policy in the measure space
of the policies. In other words, we reduce the effects of
samples from outside the trust region on the update. A; as
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Figure 4. To collect generated samples, we iteratively pass observation through the policy network and choose an action. Both the obser-
vation and action are passed to the discriminator and we take log of output of discriminator to get a cost (reward) for the given observation
and action. At each step, we append the observation, action and cost/reward received to an array. Action is then passed to the environment
which returns the next observation. The process is repeated till a time limit is reached or environment returns a ‘done’ signal denoting end

of episode.

noted in the background section, computes the advantage of
the action a; taken in the state s; over all the possible other
actions in that state.

Experiments in the original paper [6] validated this
method only for continuous action spaces with sensory in-
puts. Our objective here is to apply this method to control
discrete action space using high dimensional visual data as
input. We have chosen Atari games as environment of our
choice due to rich variety of tasks present in it and an easy
to use interface available through OpenAl gym software [4].

Network Structure: Atari is a significantly harder
testbed as compared to control tasks due to the fact that it
constitutes a partially observed Markov Decision Process
(MDP). Further, the observations in Atari are image frames
and not sensor readings, this essentially means that mean-
ingful features have to be first extracted as well by the agent.
In order to tackle this issue, we benefit from the convolu-
tional neural network design proposed by [7]. This network
receives a sequence of four prepossessed frames concate-
nated across the channel dimension. In the first step, 32
8 x 8 filters are applied to the input with 4 x 4 strides. At
the second layer, 62 4 x 4 filters are applied with stride of
2. At the third layer, input is convolved with 64 3 x 3 filters
with stride of 1. The output from third convolution layer
is flattened and fed to full connected layer with 512 hidden
nodes.The output from this hidden layer is then fed sepa-
rately to a policy network and a value network. The policy
network for the pong is shown in figure 2.

For discriminator, we try several different choices of net-
work architecture. We experimented with sharing the con-
volutional part of architecture between the discriminator
and policy network, however, we observed that this fails
to work well. Primarily due the fact that discriminator and
policy network are looking for different kind of features.
We discovered that the best performing choice of discrimi-
nator used three convolutional layers as well but contained
a smaller number of filters. The final architecture used for
discriminator is shown in figure 3.
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Figure 5. We use gradient based class activation mapping to visu-
ally identify the areas within the most recent frame which resulted
in higher values of logit for the chosen action.

Grad-CAM: Grad-CAM [12] is a method for identify-
ing what regions in an image contribute highly to the highest



Figure 6. Visualization of what regions in the input frames are
causing high score for the action chosen by the agent in the Pong
environment. Note that the agent focus is mostly on the ball or on
opposite player’s stick or on the score.

Pong Breakout

GAIL 21 390
Behaviour Cloning 21 150

Table 1. Median reward achieved by GAIL compared with be-
haviour cloning in our experiments.

logits class and is used to interpret classifier networks. Here
we use this technique to interpret the actions chosen by the
policy network.

6. Experiments and Results

We restrict our experiments to two environments of Atari
i.e. Pong and Breakout due to limited computational bud-
get. Figures 7 and 8 show the average reward attained by
the agent as a function of number of timesteps taken in the
environment. We report our results in the table 1. For be-
haviour cloning, we use results reported in literature [3].

Further, we attempt to visualize what the agent is doing
by treating the policy network as a classifier and using grad-
CAM algorithm. Results of these visualizations are shown
in figure 6 for the game of pong.

7. Discussion and Perspective

While GAIL is sample efficient in terms of requiring
samples labelled with reward, we found that it is quite in-
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Figure 7. Reward per episode for the Pong game.
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Figure 8. Reward per episode for the Breakout game.

efficient in terms of environment interactions required to
achieve competitive reward. For example, for the Breakout
game, the policy network of GAIL required about 3 times
as much interaction with the environment as the Proximal
Policy Optimization (PPO) algorithm to achieve the same
level of performance. However, we do note that on simpler
environments, such as CartPole, GAIL only required quar-
ter of the interactions as PPO. The inefficacy of GAIL on
Atari can be attributed to the fact that it also includes the
process of extracting features from the frames and lack of
true reward function ultimately makes this process difficult.

Further, we note that training of GAIL is extremely brit-
tle. Training of the reinforcement learning in general is
quite difficult and the fact that GAIL requires multi scale
optimization of an adversarial game does not help the cause
either.

Limited computational resources and the above two fac-
tors restricted us to only run our algorithm on two Atari
games.



8. Conclusion

We show that despite the fact that GAIL achieves com-
petitive results on Atari domain, it requires an extremely
large amount of interactions with the environment.
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