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Motivation

- Traditional solvers
- Discretize solution by creating a mesh and approximate solution on mesh using numerical
methods (finite difference, spectral methods etc.)
- Limitations:
- Curse Of Dimensionality: Mesh size grows exponentially in number of dimensions
- Limitations On Resolution: Do not permit arbitrarily high resolution

- Can learned PDE solvers do better?



Machine Learning Approach To Solving PDEs

- Physics Informed Neural Network [Raissi et al. 2019]

- Parametrize neural network as the solution to PDE i.e. u = NN(x,t) where u is solution of u_t -
f(x,t,u_x,..) and train under the constraints imposed by partial differential equation model.

- No discretization or mesh like structure needed

- Data free training

- Neural networks better at handling curse of dimensionality
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- What if your initial conditions change slightly?
- Need to retrain the NN

- Can be very time consuming when solutions of a PDE across large number of conditions are
required.

- Can a NN solution be made to generalize over initial conditions?



Problem Setup

We consider stiff PDEs having the form

Ou(x,t;1) N Ou(x,t;i) u(x,t;i)
= :f(x,t,u(x,t;z), e i ,

where x € RP,t € R,u : R? x R — Ris the solution of the PDE and f is a known function. Since the
solution 4 depends upon the initial conditions 7 we make this dependence explicit by writingu(z, t; 7).

7T will denote the distribution of initial conditions.

We are interested in training a single model that approximatesu(z, t;i) forany: ~ Z when trained on a
subset of them.



Proposed Methodology

Use a Generative Adversarial Network (GAN) [Goodfellow et al., 2014].

Idea: Feed in the initial conditions to the generator along with 2.

Problem: How to force the generator to condition on these initial conditions?

Use an InfoGan [Chen et al., 2016] style-inspired reconstructor to condition on the initial conditions.
3 components:

1. Generator: Takes in z, t and ¢ and produces &
2. Reconstructor: Takes in % and tries to reconstruct s.
3. Discriminator: Takes in 4 and u and tries to discriminate between them.
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Proposed Methodology - Details

Train the generator and discriminator by minimizing
L = Lgan +aLppp + BL1c +vLBc

where

Loan = Eixtz [log Dy (x,t,u(x,t;4),7)] + Eixiz [1 — log(Dy (x,t, Ge(x,t,1,2),1))] ,
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Results and Discussion
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Conclusion And Future Work

- General Differential Equation solver
- First step towards general learned differential equation solver
- General across types of PDEs, initial and boundary conditions
- Handle high dimensions and higher order derivatives
- Low time and space complexity

- Learning based methods have promise but still a lot needs to be done.



Thank Youl!



