Usman Anwar¹, Shehryar Malik¹, Alireza Aghasi², Ali Ahmed¹

¹Information Technology University, Lahore. ²Georgia State University, USA.

July 17, 2021

Motivation

- Al safety.
- Important for agent to know what *never* to do.
- Manual constraint specification not possible.
- We study the problem of 'constraint inference' in perspective of embodied agents trained through reinforcement learning.

Motivation

- Al safety.
- Important for agent to know what *never* to do.
- Manual constraint specification not possible.
- We study the problem of 'constraint inference' in perspective of embodied agents trained through reinforcement learning.

Contributions

- Learning constraints in high dimensional continuous settings.
- Transfer to new agents across morphology and dynamics.

Preliminaries & Notation

- \mathcal{M} represents a nominal MDP.
- Augmenting \mathcal{M} with some constraint set \mathcal{C} results in a constrained MDP $\mathcal{M}^{\mathcal{C}}$.
- \mathcal{M} and $\mathcal{M}^{\mathcal{C}}$ have the same reward function but may differ in their optimal policies $\pi_{\mathcal{M}}$ and $\pi_{\mathcal{M}^{\mathcal{C}}}$.
- We represent true constraint set with C^* , which is known to the demonstrating agent, but unknown to the RL agent.

Find the constraint set which best explains the demonstrations $\mathcal D$ and nominal MDP $\mathcal M$.

$$\mathcal{C}^* \leftarrow \operatorname*{argmax}_{\mathcal{C}} p_{\mathcal{M}}(\mathcal{D}|\mathcal{C}). \tag{1}$$

Maximum Entropy Model

We assume that all trajectories τ in the dataset D are distributed according to the maximum entropy distribution.

$$\pi_{\mathcal{M}^{\mathcal{C}}}(\tau) = \frac{\exp(\beta r(\tau))}{Z_{\mathcal{M}^{\mathcal{C}}}} \mathbb{1}^{\mathcal{M}^{\mathcal{C}}}(\tau).$$
(2)

where

- $\mathbb{1}^{\mathcal{M}^{\mathcal{C}}}$ is an indicator function which is 0 if τ belongs to constraint set \mathcal{C}
- Indicator function distributes over individual state action pairs, i.e.,

$$\mathbb{I}^{\mathcal{M}^{\mathcal{C}}}(au) = \prod_{i=1}^{\mathcal{T}} \mathbb{I}^{\mathcal{M}^{\mathcal{C}}}(s_t, \mathsf{a}_t).$$

Maximum Entropy Model

We assume that all trajectories τ in the dataset D are distributed according to the maximum entropy distribution.

$$\pi_{\mathcal{M}^{\mathcal{C}}}(\tau) = \frac{\exp(\beta r(\tau))}{Z_{\mathcal{M}^{\mathcal{C}}}} \mathbb{1}^{\mathcal{M}^{\mathcal{C}}}(\tau).$$
(2)

where

- $\mathbb{1}^{\mathcal{M}^{\mathcal{C}}}$ is an indicator function which is 0 if τ belongs to constraint set \mathcal{C}
- Indicator function distributes over individual state action pairs, i.e.,

$$\mathbb{I}^{\mathcal{M}^{\mathcal{C}}}(au) = \prod_{i=1}^{T} \mathbb{I}^{\mathcal{M}^{\mathcal{C}}}(s_t, a_t).$$

Observation

Learning $\mathbb{I}^{\mathcal{M}^{\mathcal{C}}}$ is equivalent to learning the constraint set \mathcal{C} .

Final Objective

Use a classifier ζ_{θ} parametrized by θ to approximate the indicator function $\mathbb{1}^{\mathcal{M}^{\mathcal{C}}}(\tau)$:

$$\nabla_{\theta} \mathcal{L}(\theta) = \underbrace{\mathbb{E}_{\tau \sim \pi^{\mathcal{C}^*}} \left[\nabla_{\theta} \log \zeta_{\theta}(\tau) \right]}_{\text{expert}} - \underbrace{\mathbb{E}_{\hat{\tau} \sim \pi^{\zeta_{\theta}}} \left[\nabla_{\theta} \log \zeta_{\theta}(\hat{\tau}) \right]}_{\text{for } (\beta)}, \tag{3}$$

Inverse Constrained Reinforcement Learning - Training Tricks Regularizer

$$R(\theta) = \delta \sum_{\tau \sim \{\mathcal{D}, \mathcal{S}\}} [\zeta_{\theta}(\tau) - 1]$$
(4)

Importance Sampling

$$\omega(s_t, a_t) = \frac{\zeta_{\theta}(s_t, a_t)}{\zeta_{\bar{\theta}}(s_t, a_t)}.$$
(5)

KL Based Early Stopping

$$D_{\mathsf{KL}}(\pi_{\bar{\theta}}||\pi_{\theta}) \leq 2\log\bar{\omega}$$
$$D_{\mathsf{KL}}(\pi_{\theta}||\pi_{\bar{\theta}}) \leq \frac{\mathbb{E}_{\tau \sim \pi_{\bar{\theta}}}\left[(\omega(\tau) - \bar{\omega})\log\omega(\tau)\right]}{\bar{\omega}}.$$
(6)

Results: Learning Constraints

Figure: The environments used in the experiments for learning constraints.

Results: Learning Constraints

Figure: Performance of agents during training over several seeds (5 in LapGridWorld, 10 in others). The x-axis is the number of timesteps taken in the environment. The shaded regions correspond to the standard error.

Results: Transferring Constraints

Figure: Constraints learned in ant environment were transferred to point and ant broken environments.

Results: Transferring Constraints

Figure: Transferring constraints. The x-axis is the number of timesteps taken in the environment. All plots were smoothed and averaged over 5 seeds. The shaded regions correspond to the standard error.

Ablation Studies

Figure: Ablation studies on the HalfCheetah environment. All plots were averaged over 5 seeds. IS refers to importance sampling and ES to early stopping. The x-axis corresponds to the number of timesteps the agent takes in the environment. Shaded regions correspond to the standard error.

Limitations & Future Work

- Maximum Causal Entropy & stochastic MDPs.
- Soft Constraints.
- Off-policy constraint learning.
- Robust imitation learning.

Thank You.