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Motivation

o Al safety.
® |mportant for agent to know what never to do.
® Manual constraint specification not possible.

® We study the problem of ‘constraint inference’ in perspective of embodied agents trained

through reinforcement learning.
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Motivation

o Al safety.
® |mportant for agent to know what never to do.
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® We study the problem of ‘constraint inference’ in perspective of embodied agents trained

through reinforcement learning.

Contributions

® |earning constraints in high dimensional continuous settings.

® Transfer to new agents across morphology and dynamics.
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Preliminaries & Notation

® M represents a nominal MDP.
® Augmenting M with some constraint set C results in a constrained MDP MC.

® M and MC have the same reward function but may differ in their optimal policies 7
and 7 p4c.

® \We represent true constraint set with C*, which is known to the demonstrating agent,
but unknown to the RL agent.
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Inverse Constrained Reinforcement Learning

Find the constraint set which best explains the demonstrations D and nominal MDP M.

C* < argmax pa(DIC). (1)
C
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Inverse Constrained Reinforcement Learning

Maximum Entropy Model

We assume that all trajectories 7 in the dataset D are distributed according to the maximum
entropy distribution.

exp(Br(7)) , me
muge(r) = SELC I M 7y, )
MC
where
e 1M is an indicator function which is 0 if 7 belongs to constraint set C

® |ndicator function distributes over individual state action pairs, i.e.,

T
:H.MC (T) = H ]]_Mc (51_-7 at).
i=1
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Inverse Constrained Reinforcement Learning

Maximum Entropy Model

We assume that all trajectories 7 in the dataset D are distributed according to the maximum
entropy distribution.

exp(Br(7)) , me
muge(r) = SELC I M 7y, )
MC
where
e 1M is an indicator function which is 0 if 7 belongs to constraint set C

® |ndicator function distributes over individual state action pairs, i.e.,
T

1M(r) = [T 1M (st ).
i=1
Observation

Learning 1M s equivalent to learning the constraint set C.
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Inverse Constrained Reinforcement Learning

Final Objective

Use a classifier (y parametrized by 6 to approximate the indicator function M° (7):

RL agent
VoL(0) =E__ e [Volog Co(T)] — Es o [Vo log Co(7)], (3)

expert
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Inverse Constrained Reinforcement Learning - Training Tricks

Regularizer
RO)=06 > [G(r)-1] (4)
T~{D,S}
Importance Sampling
_ C@(Sl’a at)
w(St,at) = C@‘(St;at)' (5)

KL Based Early Stopping

DKL(7T9'||7T9) S 2 IogaT)

Dt (ol m5) < Ermr; [(w(T) - @) log w(T)]. (6)
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Experiments
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Results: Learning Constraints

(a) LapGridWorld (b) HalfCheetah

Figure: The environments used in the experiments for learning constraints.
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Results: Learning Constraints

Reward (higher is better):
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FIgU I'€. Performance of agents during training over several seeds (5 in LapGridWorld, 10 in others). The x-axis is the number of timesteps taken in the
environment. The shaded regions correspond to the standard error.
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Results: Transferring Constraints

(c) AntBroken

Figure: Constraints learned in ant environment were transferred to point and ant broken environments.
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Results: Transferring Constraints
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FIgU I€:. Transferring constraints. The x-axis is the number of timesteps taken in the environment. All plots were smoothed and averaged over 5 seeds. The

shaded regions correspond to the standard error.
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Ablation Studies

Reward (higher is better):
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FIgU I'€. Ablation studies on the HalfCheetah environment. All plots were averaged over 5 seeds. IS refers to importance sampling and ES to early stopping.
The x-axis corresponds to the number of timesteps the agent takes in the environment. Shaded regions correspond to the standard error.
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Limitations & Future Work

® Maximum Causal Entropy & stochastic MDPs.
® Soft Constraints.
e Off-policy constraint learning.

® Robust imitation learning.
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Thank You.
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